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1. Introduction 

The depth requirements for a calorimeter to be used at the SSC are herein 

explored. Obviously, this parameter is a crucial cost driving element as it defines 

the size of the muon system, and the materials cost of the calorimeter itself. For 

this reason, it is imperative to make the calorimeter depth as shallow as possible. 

Balancing this tendency, the depth must be of a sufficient thickness so as not to 

compromise a variety of Physics issues. Among those topics are jet energy 

resolution, the size of the cross section for missing transverse momentum, and the 

filtering of hadrons before they enter the muon system. 

2. Longitudinal Leakage in Calorimeters 

The first task to be accomplished is to collect data on longitudinal leakage 

and leakage fluctuations in calorimeters. This data could then be parametrized 

and the parameterization used in a Monte Carlo program. It was thought to be 

important to use an ensemble of data sets since they would differ in energy 

range, beam tagging, transverse containment, longitudinal containment, and 

perhaps other systematic factors. 

It is also true that in extrapolating to the SSC one must go beyond the 

region of validity of the data. A variety of functional fits allows one some idea 

of the systematic errors in this case. 

2.1 CITF Model 

As a first step, the data from the CITF collaboration[‘l are parameterized so 

as to make a model to extrapolate to all energies. Some of the data are shown 

in Fig. 1. The approximation is made that the fluctuation in the contained 

energy fraction f, scaling as & causes a degradation in energy resolution, r = 
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dE(f)/dE(l), which is energy independent. It is further assumed that the depth 

of absorber needed for a containment fraction f scales logarithmically with the 

incident energy E, see Fig. lb. This assumption is obvious, given the general 

properties of hadronic showers. L21 The parameterization given below, Eq. 1, is 

shown as dashed curves in Fig. 1. The energy, E, is in GeV units. 

(l-l/r) = am 

D = DO exp(-bm 

D,, = c+dlnE. 

(1) 

The parameters are, a = 0.9, b = 3.2, d = 0.43, and e = 3.51 absorption 

length6 in steel. Note that in what follows, an absorption length is defined to be 

16.76 cm of steel. This form provides a reasonable representation of the data 

given in Fig. 1. Shown in Fig. 2 is the value of r as a function of depth at 

fuced energy. Again the parameterization given in Eq. 1 works fairly well. Other 

data sets have been checked against this formulation. A data set spanning the 

same energy range is well represented by the f = 0.95 curve analogous to those 

data shown in Fig. lb. I31 Similarly, the curve analogous to Fig. 2 is well 

represented at lower energies.(41 However, as a note of caution, some dataj51 for r 

as a function of E are not well matched to Eq. 1, at least at energies above 100 

GeV. 

2.2 WA1 Model 

The form given above will be used in all the work which follows. It is 

convenient for hand calculations and for incorporation into Monte Carlo 

simulations. Note, however, that this formulation represents only the Gaussian 

part of the error. There is a long asymmetric tail which has not been 

parameterized. In order to answer this objection to the model and to obtain an 

ensemble of data sets a second form wae also studied. Having several forms 

allows one to check that the conclusions are stable under variations of the input 

assumptions. This second model uses an averaged shower shape.16) 

dE = c, fo t”-‘em”dt + c, (l- fo)D’-Le-*DdD. (2) 
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The energy has an electromagnetic, (fo), and an hadronic, (1 - fo), 

component. The depth is in radiation length, t, units and absorption length, D 

= X/X0, units. The normalization is, cI = Eb’/f(a) and cr = Eg’/I’(a). 

Assuming that the electromagnetic energy is rapidly absorbed, the hadronic 

energy fraction leakage from a depth v = gD, AE/E, and the corresponding 

energy error (using an asymptotic expansion), dE/E, due to fluctuations in 

electromagnetic fraction, dfo, and conversion point, dD. is, 

AEEE = -(l-fo)T(a,v)lr(a) 

dElE - (AE/E)(l/[l-fo])&Co[-l+(a-1)/v]&. (3) 

In Eq. 3 r(a,v) is the incomplete gamma function and only the tirst term in an 

asymptotic expansion has been retained in estimation the error. Using the 
parameters a, b, g, and fo given in Ref. 6, this form was checked against the 

form given in Eq. la, i.e. is f = AE/E? The agreement is quite good. The 
advantage of thii second scheme is that the fluctuations in the hadron conversion 

point, dD, and in the electromagnetic fraction, dfo, will lead to an asymmetric 

distribution in AE/E and hence to a tail in the resolution dE due to the 

fluctuations in AE. In Eq. 3 only the Gaussian error is quoted. 

2.3 CDHS Model 

A third technique uses the data on resolution due to leakage given by the 

CDHS group.(‘) A reasonable representation of the data, after deconvoluting the 

calorimeter resolution itself, is 

(dE/ E) = 1.6e-(D’Dm’ 

D = 0.93 (1+0.49 lnE). SW 
(4) 

Thus, at any depth D, for any energy E, one can find the effective interaction 

length DEFF, and then the leakage contribution to the energy resolution. 

For example, at 1.0 TeV, for a depth, D, of 10, DEFF = 4.08 and (dE/E) 

due to leakage is 14%. By comparison, using Eq. 1, the first method yields Do 

= 13.94. Since the first two methods have depths referred to the interaction 
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point (Eq. 1, Eq. 2), while the third method refers to the physical calorimeter 

depth, roughly 1 absorption length should be removed in comparing Eq. 1 to Eq. 

4. Thus, D = 9 in Eq. 1, the containment factor f is 0.98, and r = 1.14. 

Since r refers to the ratio of resolution with respect to dE(l) z 1.1/A @ 0.03 = 

0.046, the deconvoluted leakage error is (dE/E) 2.5%. At first glance, these two 

formulations do not seem to be compatible. 

In fact, the discrepancy is only apparent. The CDHS fit uses rms for a 

distribution which is distinctly not a Gaussian. We have compared the data of 

Sections 2.3 and 2.4 analyzed in comparable ways and convinced ourselves that no 

contradiction exists. That being the case, we drop reference to the CDHS model 

in what follows since we do not have available a convenient Gaussian fit to be 

parametrized. 

2.4 Lab E Model 

In order to improve the energy range and containment properties available in 

the models, Lab E test beam data wee used.[‘) This data spans the range 15 to 

450 GeV, which we will see is a range almost sufficient for the maximum 

transverse energy jet accessible at the SSC. The energy seen upstream of a given 

depth wss fit to a Gaussian, and the width was characterized as in Eq. 4. Since 

the algorithm was different, compared to the CDHS rms calculation, the values 

were, therefore, rather different. The parameterization was, dE/E = 0.5 exp (- 

D/D,,,) with D,, = 0.88 (1 + 0.35 1nE). The contained energy fraction, f, 

was found to be well represented by the form given in Eq. 1. The values of the 

parameters for the Lab E data, b = 2.4, c = 5.5, and d = 0.19 result in values 

of D and D, which are compatible with those of the CITF model over the range 

of energies spanned by the data. 

These three models were used in all subsequent work. The spread among 

them is an indication of the “systematic error” to be found among the existing 

published data on depth and energy resolution in hadron calorimeters. 

3. Dijets and Depth Requirements 

One possible physics topic which might drive the design of an SSC 

calorimeter is the measurement of dijet messes. The question to be answered is; 
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what is the highest possible dijet maas which can be measured at SSC design 

luminosity? From the answer follows the highest jet energy which must be well 

measured. 

3.1 Maximum Accessible Mass 

The question of QCD jets has been addressed many times in the context of 

the SSC.Igl Curves are given in Ref. 9. A rough parameterization is needed to 

extrapolate from these curves to the cases of interest. The simple form(“) shown 

below has been adopted to do this extrapolation: 

do/&4 = g(l-M/&)‘2/M’. (5) 

The constant g is roughly 1.2 mb (GeV)‘, M is the dijet mass, and s is the 

square of the CM energy. Thii form is an adequate representation of the exact 

calculationlg] for dijet transverse momenta, P, * M/2, in the range 2 to 4 TeV. 

Using this form one finds that at design luminosity, in a one year, = 107 set, 

run, there are * 150 events in a *2% mass bin for a 10 TeV dijet mass (Pt = 

5.0 TeV). Hence, one runs out of statistics at a dijet mass around 10 TeV in 

that the statistical error is 5% in a bin set by the 2% resolution. 

3.2 Fragmentation 

The next task is to make the connection between jet energy containment and 

the energy containment of individual hadrons. For the purposes of hand 

estimates and building up intuition, a simple formi” of the jet fragmentation 

function, D(e), is adopted. This function specifies the probability that a jet of 

momentum P fragments into a hadron of momentum k; z is the momentum 

fraction carried off by the hadron: 

ki = z, P. r. z, = 1 

D(z) = [(h+l)(l-Z)h]/Z 
<n> = (h+l)b (l/z,)-(h-h[h-1]/4+...+1/h)] 

ZO = m,/P. 

(6) 
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Thii form is a reasonable parameterization of the existing e’e- dataI” for the 

charged muitiplicity if one assumes that the total muitiplicity is a factor 3/2 

higher and if h is w 6.0. This form also provides a good representation of the 

CDF data.[131 The shape of D(z) as a function of z is given in Fig. 3. The 
dashed and dashed-dotted curves are the approximate forms, D(z) = 7/z and D(z) 

= 125 exp (-132) respectively. Since the integral of D(z) is the multiplicity, Eq. 

6, one can find the average location of particles in the fragmentation chain. The 
locations are also indicated in Fig. 3. For example, the “leading” fragment exists 

between z = 1.0 and z = 0.174. Although the fluctuations are enormous, one 

can assign a mean z location for the leading fragment. 

<z, > - 0.23 

k, - <z,>p,. (7) 

This point, <zt>, is detined to be the point where the mean multiplicity 

starting from the end point of z at z = 1 is = 0.5. Hence, it is the mean 

location of the “leading” fragment. 

The estimate for <z,> allows us to estimate the angular scaling of an SSC 

detector immediately. A glance at Eq. 1 shows that, for a given containment 

fraction f, the required depth ratio depends only on energy and not f. Picking a 

futed P, = 5.0 TeV, set by the maximum accessible dijet maes, k, = <zt> P,. 

The dependence as a function of rapidity, y, is quite weak (logarithmic). The 

approximate relation, y = -In [tan (e/2)] has been assumed: 

D(y)lD(O) = (l+dLn[k,/sin8])/(1+din[k,]). (8) 

The ratio is displayed in Fig. 4. Clearly there is only a minor thickness 

increase in the calorimetry as the result of increasing y from y = 0 to y = 3. 

Note that this result is independent of which value of f is ultimately deemed 

necessary. 

3.3 Estimate, f = 0.99 

As a first guesstimate, one can ask for f = 0.99 for a jet of transverse 

momentum P,. As seen in Fig. la, this requirement would insure that the dijet 
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mass would be well measured on the scaie of the calorimeter energy error, which 

at high masses would be a few percent. Individual particles in the jet would be 

measured to 4% error or less due to leakage. Using <z,> and taking as an 

upper limit M = 10 TeV, one gets the curve of 99% containment depth as a 

function of P, which is shown in Fig. 5. Thii Figure is made by assuming that 

the f = 0.99 criterion applies to the leading fragment. Using this criterion, one 

gets a very crude estimate that u 10 to 11 absorption lengths are required. 

3.4 Msss Errors Due to Calorimeter Resolution 

There are many sources of mass error. For “low” masses, 0.1 TeV and 1.0 

TeV, the mass resolution is not determined by the energy measurement but by 

fluctuations in the jet fragmentation and in the underlying event.l”l As discussed 

below, at high enough mass, this will not be the case. In the equation which 

follows it is assumed that the vector sum of momenta is roughly the scaler sum 

(Eq. 6). One further assumes that, as in low P, jets, the mass resolution is 

dominated by momentum errors. Finally, one assumes that the calorimeter 

granularity is sufficiently fine that individual hadrons are independently measured. 

If the calorimeter energy resolution, dE, det ermines the msss resolution, dM, then: 

&IE = Sl&CBt 

dMIM - s/mcBt<z,>/JZ. 
(9) 

The second formula follows from the first using Eq. 6 and propagating the 

errors. It is assumed that the sum of the squares of zi can be approximated by 

the leading term zf. 

For example, a typical hadronic calorimeter resolution might be s = 0.5, t = 

0.03. These values of the parameters have been used in the Monte Carlo studies 

described below. This single particle resolution leads to a dijet mass resolution as 

given in Eq. 9. The resolution, dM/M, as a function of calorimeter depth, at 

fmed mass = 10 TeV, is shown in Fig. 6. In thii Figure, the value of r in Eq. 

I was assumed to refer to the quoted resolution of Ref. 1 folded in quadrature 

with a leakage term, a.s discussed above. 



Clearly, the constraints on depth are rather soft, given the logarithmic 

dependence of D,. Note that D, - 14.1 absorption lengths for the leading 

particle fragment. Note also that dM/M is n 1% at great depths which is very 

small on the scale of “low” mass errors. 11’1 Obviously, a detailed Monte Carlo is 

required to quantify these estimates and to elucidate the size of the fluctuations 

due to fragmentation, the underlying event, and the existence of heavy flavors in 

the jet. For this purpose, the package SSCSIM, a FNAL supported product,[“l 

was used. 

3.5 Monte Carlo Results 

There are several effects in addition to measurement error which are 

important to dijet mass resolution. The underlying event contains a fluctuating 

amount of transverse energy which may fall into a “cone” containing the jet. 

With a density of 8 particles per inelastic event per unit of rapidity, where each 

particle contains roughly 0.6 GeV of k,, one has 4.8 GeV per unit of y. This 
means roughly 1.1 GeV within a cone of radius, R = (Ay)’ + (A))a = 0.6 for 

“minbias” events. Hard scattering events have a higher density; the SSCSIM 

result is that there is _ 5.0 GeV within a cone of radius R = 0.6 for 10 TeV 

dijet events. 

The jet contains many soft fragments as shown in Fig. 3. For a cone of 

radius 0.7, and k, * 0.6 GeV, all fragments with momenta less than k,a = 0.86 

GeV wiil fall outside the cone radius and be lost. Given the form of D(z), this 

means that _ (h+l)k,,, w 6.0 GeV falls outside the search cone. One can 

optimize the search cone; but a smaller size loses more fragments, while a larger 

size adds more extraneous underlying event energy. Thus, there is an optimal 

cone. In this work the magnetic field effects are not studied. Presumably, they 

would act so as to increase the fluctuations. 

Fluctuations set a scale P,, - 5 GeV for fluctuations into or out of that 

cone as we have seen above. One expects, very crudely, that this error 

contributes to dM/M a term to be added in quadrature to Eq. 9. 

(hlM),,uc = diP,lM. (10) 

8 



A fixed value of Pnuc means that at high masses fluctuations are less 

important and that the “intrinsic” calorimeter resolution may begin to be the 

dominant term in the dijet mass resolution. The scale for Pnuc to cause a 1% 

error, dM/M, is estimated to be M = 0.7 TeV in the case that Pguc is caused 

by fluctuations due to fragmentation and the underlying event. 

First one needs to optimize the cone radius defining the jet. In Fig. 7 is 

shown the standard deviation of the reconstructed to generated dijet mass ratio, 

6, as a function of cone radius. If only jet fragments are used, the error 

decreases smoothly till it reaches a value +, 0.01 at R * 1.0. When the 

underlying event, and its fluctuations, are added the minimum error occurs at R 

_ 0.6. The error is then increased to w 2%. This simple clustering algorithm 

hss been checked against a more complete approach.[“l The results given here 

are stable with respect to the treatment of clustering. Note that in order to 

contribute to dM/M by 1.4% the scale of momentum fluctuations must be m 100 

GeV. This size for Pa, is well above the _ 5 GeV scale which was previously 

estimated. The origin of this scale for Pnuc is “hard” non-colinear gluon 

radiation and neutrino losses from heavy flavors as will be discussed below in 

Section 4. 

A histogram of the ratio of reconstructed to generated dijet mass is shown in 

Fig. 8. The bin width is l%, and the error is 1.3% for the case of R = 0.6 

with only dijet fragments used. Note the long “radiative” tail which is due to 

giuon radiation and neutrinos, as will be discussed later. We assume that this 

“radiative tail” is soft enough that it cannot be tagged amidst the general debris 

of the diet event. 

A histogram of the energy of the leading hadronic fragment is given in Fig. 

9. Note that the mean <zl> is 0.26 with a standard deviation of 0.14. These 

results are consistent with the expectations drawn from consideration of Fig 3. 

The result for the mass error es a function of calorimeter depth is shown in 

Fig. 10. By comparison with Fig. 6 one can see that a purely resolution 

dominated (Fig. 6) calorimeter with a mass error of w 0.7% shifts to a mass 

error of * 2% (resolution and fluctuations) in the csae of a very thick calorimeter. 

The shit in asymptotic resolution me- that 10 absorption lengths is more than 
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adequate. The uncertainty is roughly 2 1 unit due to the spread in the data 

sets. This is an estimate of the extrapolation and systematic errors. 

4. Missing P, and Calorimeter Depth 

A signal for the existence of high transverse momentum neutrinos in an event 

is a large missing transverse momentum. Clearly, thii signal can be mimicked by 

a lack of “hermeticity” caused by holes in coverage at small angles, cracks due to 

leads or supports, or “leakage” due to inadequate depth of calorimetry. Thus an 

SSC calorimeter should be deep enough that leakage should not dominate the real 

sources of neutrinos. A limit to the required depth is provided by the evolution 

of a gluon jet into a heavy quark pair. The semileptonic decay of either quark 

provides a source of neutrinos which will “leak” out of the calorimeter 

undetected. It is in comparison to the scale of this leakage that the scale of 

calorimeter depth should be evaluated. 

4.1 .I l QQ + qlv 

First, what is the physics source of neutrinos? Obviously there are many. 

What concerns us here are sources topologically similar to those caused by 

calorimeter leakage. A gluon jet has a finite probability to vacuum fluctuate into 

a heavy quark antiquark, Qa, pair which then semielectronically decays in the 

core of a jet.l@ Th ls process acts as an irreducible physics background source of 

neutrinos in the vicinity of jets. It is assumed that a muonic decay is tagged (1 

= p) but that in an electronic decay (1 = e) the e will be lost in the core of 

the jet. A rough estimate of the probability is given in Eq. 11. The strong 

coupling “constant” is taken, for purposes of hand estimates, to be = 0.1. This 

value is not unreasonable given the mass scales involved and the slow, logarithmic 

“running” of 0.. The value for the semiloptonic branching ratio, B(Q + qly) is 

taken to be 20%. 

a, / r ln(2MQ / P,) B(Q + qfv) 

ux$k - 416. 
(11) 

The cross section for jets, Eq. 5 in arbitrary units, and for the neutrinos, Eq. 

11, is shown in Fig. 11. At a fmed P,, the missing P, due to neutrinos is down 
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by a factor * 1w5 with respect to the jet cross section. This factor has 2 

components. First, as shown as a vertical dashed line, the probability for g + 

QQ, Q + q e v is about 1%. Second, the reduced P, of the neutrino with 

respect to the gluon, coupled with the steep gluon P, spectrum, reduces the cross 

section by another factor of * 1000 at fixed P,. This six-fold reduction going 

from P, to f/: is shown as the horizontal dashed line in Fig. 11. 

4.2 Jet Leakage 

In comparison, a calorimeter of finite depth will leak some fraction, l-f, of its 

energy out the back. This leakage will cause one to miss some of the energy. 

p/: = (fg,, - (I-f)F: (12) 

The resulting spectrum for 95% containment is shown in Fig. 11. One 

obtains it by using the jet cross section and derating P, by a factor of 20 to get 

P due to incomplete containment. /: Clearly, this loss of energy leads to a missing 

P, cross section quite comparable to the irreducible rate due to the decays of 

heavy flavors in jets. 

The design criterion is to make the calorimetric leakage < the physics leakage 

at all accessible (luminosity dependent) dijet masses. An estimate for 10 TeV 

dijet mass, P, w 5.0 TeV, k, * <z,>P,, is that * 7 * 1 absorption lengths are 

needed. Thus the limit on depth placed by the dijet mass resolution appears to 

be more stringent than that imposed by leakage. Note that this limit has been 

estimated using only the leading QCD hard QQ fragmentation. It is also true 

that the response function has been assumed to be a Gaussian characterized by a 

standard deviation. There are, however, tails which, if not removed, lead to 

missing transverse momentum which may dominate over real physical processes. 1171 

We defer discussion of the tails until longitudinal segmentation is discussed. 

4.3 Leakage and Calorimeter Resolution 

It is interesting to note that the evolution of gluons into heavy flavor 

fragments places an upper limit on the accuracy of any calorimeter. Thus, one 

must note that the “leakage’ of a jet limits the ultimate “constant term” which 
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one can attain for jets. The probability for a dijet to produce a neutrino can be 

roughly estimated, in perturbative QCD, from leading fragmentation to be; 

P(v) - (4q / ~0 1~ Wf, / p,) B(Q -+ q/v). (13) 

For a 10 TeV dijet, P, = 5.0 TeV, this is _ 8% for b or c decays into 

electrons and neutrinos. When that decay occurs, the jet loses * l/6 of its total 

energy on average or, roughly, 5000 GeV (0.08)/6 = 66 GeV is lost per jet or 

1.3%. This loss leads to an error on the jet energy which places a lower limit 

on the accuracy of energy measurement. The long tail and asymmetric 

broadening of the mass peak in Fig. 8 is partially due to the presence of 

neutrinos in the jets. 

4.4 Monte Carlo Results 

The Monte Carlo program with dijets was used to study the neutrino 

leakage. A plot of the ratio of the mean leakage energy to the mean neutrino 

energy for 10 TeV dijets is shown in Fig. 12 as a function of calorimeter depth. 

At - 12 absorption lengths the leakage energy falls below the “intrinsic” leakage 

due to neutrinos from heavy flavor decays. This result is more restrictive than 

that which is inferred from Fig. 11, which reflects the effect of an entire chain of 

fragmentation fluctuations to Qa within the jet. Note that Fig. 11 assumes only 

“leading” fluctuations. 

This cascade effect is displayed in Fig. 13 where the distribution of the 

fraction of the jet energy possessed by the neutrino is plotted. Most neutrinos 

are quite soft; the mean energy fraction for all events is 1.6% with a spread of t 

1.4%. However, only 18% of the events have a neutrino, and for these events 

they carry away approximately 5% of the energy. Clearly, the neutrino leakage 

effect contributes substantially to the resolution of a thick calorimeter for very 

high mass dijets. 

Assume that the mass error is due to the effects of resolution, fluctuations 

due to fragmentation and underlying event, neutrino leakage, and depth leakage 

folded in quadrature. For depths above 10 absorption lengths, the depth leakage 

is not important. The fluctuation term, Eq. 10, falls as l/M, and is small for 

large masses. The effects of stochastic contributions to the energy resolution fall 
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as l/a, Eq. 9, while the neutrino leakage rises as In(M), Eq. 13. Finaily, the 

effects of non-colinear gluon emission dominate at high masses. 1”) This latter 

effect has a very soft (logarithmic) decrease with mass. At 10 TeV, the gluon 

radiation fluctuation is most important, followed by neutrinos, while the energy 

measurement errors are only third most important. 

5. Depth Required for Muon Identification 

The calorimeter also serves as a preliminary filter for the muon identification 

system. Clearly, one should examine whether the total depth of the calorimeter 

is also suffrCient for this task. The total depth of the muon system is set by 

global considerations for muon identification. lrgl The calorimeter depth should be 

sufficient to insure that the rate from hadronic punchthrough is less than the 

irreducible rate from pion decays in the tracking volume. In order to explore 

this criterion, the source of pions was taken from CDF data for transverse 

momenta, P,, below 10 GeV.lr’l The cross section was scaled up to give a 

rapidity space density of 8 particles per unit of y. The resuiting rate, at SSC 

design luminosity, at y = 0, for pion decays into muons, with a 2m decay 

radius, is shown as a function of P, in Fig. 14a. Clearly, after 10 absorption 

lengths, the rate integrating over all P, is roughly 10’ Hz per unit of rapidity. 

The pions from minbias events also occasionally punchthrough the calorimeter 

into the region occupied by the inner muon detectors. The rate of punchthrough 

is estimated using a parameterization of the WA1 data.[*il The rates for 

punchthrough are given in Fig. 14b, along with the pion decay rate. Cleariy, 

real muons dominate over punchthroughs for a calorimeter thickness > 7 

absorption lengths. Since this thickness is less than that which has already been 

considered on the basis of resolution and leakage studies, one concludes that no 

more stringent requirement appears to be imposed by considerations of the muon 

system. 

6. Longitudinal Segmentation and Depth 

6.1 Energy Asymmetry and Resolution 

Until now the calorimeter has been considered to be a unitary object. 

However, at some point the fact that the cost of materials scales as D3 means 
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that depth segmentation may become an attractive alternative to adding more 

depth. In the context of the WA1 model (Section 2.2), dividing a D = 10 

calorimeter into Dl = 6 and D2 = 4 segments allows one to measure the 

interaction point and therefore estimate and/or tag the leakage. 

The interaction point is determined, on average, by the energy asymmetry b 

which is correlated with the energy leakage fraction 7: 

6 = (El - EJ/(E, + EJ 

7 = EL/E. 
(14) 

A plot of the numerical results for the mean values of 6 and 7 at 

representative energies and interaction points is given in Fig. 15. The form of 

Eq. 2 was used, but the additional smearing due to the fluctuation in shower 

shapes, dfo (Eq. 3), was not put in. The relationship is sufficiently well 

parameterized by the form 

6 = 1-o - 7/7EFF 

1/7EFF = 4.2 (1 -0.095 ln E) 
(15) 

Clearly, in the absence of any other fluctuations in the shower, the energy 

leakage can be corrected for using the depth segmentation. This correction should 

improve the energy resolution by correcting for the interaction point smearing (see 

Eq. 3). 

The containment and resolution of a D = 10.1 calorimeter longitudinally 

segmented into Dl = 6.6 and D2 = 3.5 were studied using the Lab E data. 

Representative data are shown in Fig. 16. In Fig. 16a is shown the distribution 

of containment fractions, f, for 450 GeV beam incident on the calorimeter. Note 

the long tail caused by fluctuations in the hadronic shower development. These 

fluctuations defeat attempts to use the energy asymmetry 6 to make the 

calorimeter thinner while preserving the resolution. It was found that no 

improvement in the Gaussian part of the resolution could be obtained using 

information from the two depth segments. 
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6.2 Back Section Veto and Containment 

The non-Gaussian tails in the resolution due to fluctuations can still be 

reduced. In Fig. 16b, is shown the same distribution except that the cut on A, 

the ratio of D2 energy to total incident energy, A < 0.18; was made. Clearly, 

the long tail is much reduced while preserving the events in the f z 1 region 

with good efficiency. The cut passed ,-. 85% of all events. Harder cuts on A 

improved the containment fraction average. 

The segmentation studies were then extended to cover different energies and 

total depths. After some inspection of the events it wss decided to keep a D2 = 

3.5 depth back segment. The reason for this is that the low f hadronic showers 

often appear “disconnected” with initial clumps of energy, a gap, and then a 

second energy clump. The width of these gaps roughly dictates the value of D2. 

In Fig. 17a is shown the efficiency for events as a function of A. The 

efficiency fails roughly logarithmically with the cut. At a fixed depth, D, the 

efficiency falls with energy at fmed A as expected since showers penetrate deeper 

into the calorimeter with increasing energy. At fixed energy the efficiency at 

fixed A falls ss the total calorimeter depth is decreased. 

The fraction of events, F, with less than 95% containment ss a function of A 

is shown in Fig. 17b. At an energy of 450 GeV, using the resolution that has 

been assumed so far (dE/E = 0.5/& $ 0.03) the error is dE/E = 0.038 which 

sets a scale which should be comparable to F. Thii fraction, F, falls as a power 

of A as one expects since that is the purpose of the A cut. It also rises with 

energy at fixed A, as expected. At fixed A, F rises as D decreases since a 

thinner calorimeter will leak more. 

Comparing the Figures, one can establish the tradeoffs. First, some 

longitudinal segmentation cut is needed in order to control the tails lest the real 

missing transverse momentum signal due to neutrinos be swamped by leaking 

hadrons.l”l Second, can the calorimeter be made thinner to save costs? As 

shown above, for D < 10, a thinner calorimeter degrades jet energy measurements 

at the highest accessible jet energies. Third, the fluctuation tail can be controlled 

with a thinner calorimeter, but at the cost of an inefficiency. For example, if F 

= 0.05, i.e., 95% containment for 95% of the events, then for 450 GeV, A = 0.36 

for D = 10 with c = 1.0 while A = 0.14 for D = 8.7 with r = 0.5. Since 450 



GeV corresponds to s w 0.09 for a 10 TeV dijet, which is < zr, one expects that 

the rare high-mass dijets will be vetoed by the leakage cut on A leading to a 

large inefficiency if D < 10. 

7. Summary and Conclusions 

The requirements of SSC Physics on calorimeter depths were studied. First 

an ensemble of data sets at energies < 450 GeV were assembled and 

parametrized. This ensemble, when extrapolated to SSC energies, indicates the 

range of systematic errors. 

The Physics process which was chosen was dijets at the highest accessible 

(rate limited) mass, M = 10 TeV. The leading fragment in such an event has 

21 _ 0.2 or k * 1 TeV. Using the parametrizations, one finds that D(y = 

3)/D(y = 0) = 1.2. Only a 20% increase in thickness is needed as 

pseudorapidity goes from zero to three. 

A Monte Carlo study of the diet mass resolution indicated dM/M _ 2% for 

D > 10. For thinner calorimeters, the Gaussian part of the resolution was 

increased due to leakage errors. The dijet mass resolution was found to depend 

mostly on fragmentation fluctuations, which reduced the sensitivity of dM to 

calorimeter resolution and leakage effects. 

Neutrinos from QG pairs which evolve in the jet begin to become important 

for dM at the highest masses. Defining the criterion to be that missing P, due 

to leakage be less than missing P, due to neutrinos in jets leads to the 

requirement D < 11. 

The calorimeter also removes hadrons ss the front filter for the muon system. 

Defining the criterion to be that the rate behind the calorimeter due to 

punchthrough (leakage) be less than the rate due to pion decays in a 2 m radius 

upstream of the calorimeter leads to the requirement D < 7. 

Longitudinal segmentation was found not to be useful in improving 

resolutions. However, it is extremely useful in vetoing the long tail in the 

resolution corresponding to poor containment/large leakages. A cut of A = 0.16 

effectively removes the non-Gaussian leakage tail for energies < 450 GeV in that 

the fraction with 95% energy containment is = 97% (450 GeV), > 98% (< 100 

16 



GeV), if D = 10. The loss of real events with this cut is < 15% for E < 450 

GeV. 

In conclusion, given a systematic error spread due to the extrapolation of 

existing data, a calorimeter with depth D = 10 segmented into Dl = 6.5, D2 = 

3.5 will not degrade jet measurements, muon systems, or missing transverse 

momentum measurements at the SSC. 

Acknowledgments 

The tine efforts and great patience displayed by Ms. S. Weber and Ms. T. 

Gourlay are most greatfully acknowledged by the authors. 

17 



REFERENCES 

L’1F.J. Sciulli, Photon-Collecting Hadron Calorimeters, presented at the 

Calorimeter Workshop, May 8 & 9, 1975, Fermilab. 

[‘IS. Iwata, preprint, DPNU-3-79, February 1979, Nagoya Japan. 

131~. Holder, Nut. Inst. Meth. 108, 54 (1978). 

[*]K. Rauschnabel, preprint, KEK-EXT 3/78-5. 

I’1D.L. Cheshire, Nut. Inst. Meth. 126, 253 (1975). 

L6]R.K. Bock, Nut. Inst. Meth. 186, 533 (1981). 

1’)~. Hughes, “Study of Hadronic and Electromagnetic Shower Development 

between 10 and 140 GeV by an Iron-Scintillator Calorimeter.” In 

Proceedings of the Firet International Conference on Calorimetry in High 

Energy Physica, edited by D.F. Anderson, M. Derrick, H.E. Fisk, A. Para, 

and C.M. Sazama, pp. 525-538. Singapore: World Scientific Publishing Co. 

Pte. Ltd., (1991). 

Is1F.J. Sciulli et al., Unpublished data from hadron test beam exposures of the 

full sized neutrino detector. The detector dimensions insure negligible 

transverse or longitudinal leakage in distinction to other test modules. 

W.K. Sakumoto et al., NUC. Inst. Meth. m, 179, (1990). 

I’1J.F. Owens et al., Design and Utilization of the SSC, proceedings of, Snowmalrs 

IQ&, 218 (1984). 

[~‘ID. Green, PP Collider Physics, FNAL-CONF 89/70. 

[~‘ID. Green, Dijet Spectroscopy at High Luminosity, FNAL-CONF-90/151. 

[l’]Review of Particle Properties, Phys. Lett B, 239 1-516 (1990). 

[r3]~. Plunkett and F. Abe et al., Jet Dynamics at the Tevatron Collider, 

FNAL-Conf-89/261-E, Phys. Rev. Lett. 65, 968 (1990). 

[l*l w. wu., “Results from Clustering Method for High Pt Z Jets,” SSC-SDC-FBO, 

and “Results from Clustering Method for Low Pt Z Jets,” 

SSC-SDC-F63, Fermilab SDC Internal Notes (1990). 

I~‘]A. Beretvas et al., “SSCSIM User’s Guide,” SSC-SDCF31, Fermilab 

SDC Internal Notes (1990). 

[161R.K. Ellis, An Introduction to the QCD Parton Model, FNAL-CONF-88/60-T. 

[171J. Hauptman, and M.Y. Pang, “Hermeticity Study Using the CCFR Data,” 

SDC-89-00011, SSC Solenoidal Detector Internal Note, September 15, 1989. 

[lsl~. Sterman and S. Weinberg, Phys. Rev. Lett. 39, 1436 (1977). 

llglD. Green and D. Hedin, Nut. Inst. Meth. a, 111-120 (1990). 

Lzol~. Abe et al., Phys. Rev. Lett. a, 1819 (1988). 

18 



[‘DID. Green, “Muon Triggering at Small Angels.” In Proceeding of the Workshop 

on Triggering, Data Acquistion, and Computing for High Energy/High 

Luminosity Hadron-Hadron Coliders, edited by B. Cox, R. Fenner, 

and P. Hale, pp. 402-408. Batavia: Fermi National Accelerator 

Laboratory (1985). 



,,o---- ------ - --- - -- 17_‘gop 
---- 0 

0) 

__-_-__-__--- ---- 

_____ -_---- ------ 
9 5 % 

--- --__ 
90% 

I 
r 0.5- _______ ------ 

70% 

t 
f, percent 
contolned 

IOO- 

D,, Distance 
km) 

b) 

Containment 
fraction 

100 E (GeV) 

1. Dashed curves refer to the parameterization described in the text. 

Solid curves refer to a model described in Ref. 1. 

a. Resolution ratio as a function of energy for several energy 

containment fractions, f. 

b. Distance in steel required for a given energy containment 

fraction as a function of energy for 3 values of f. 
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2. Resolution ratio with respect to total thickness at fixed energy, 200 

GeV, as a function of calorimeter depth. Dashed curve is a 

parameterization as described in the text. 
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3. Fragmentation function D(z) as a function of z. The points are 

taken from Eq. 6., while the dashed and dashed-dotted curves are 

approximate forms which are discussed in the text. Also indicated 

are the z values appropriate to multiplicities 1 through 5. 
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4. Ratio of depths required at y = 0 and at variable y as a function 

of y for a 10 TeV diet mass. 
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5. Required calorimeter depth, in steel absorption length units, to 

achieve f = 0.99 sa a function of the P, of the jet. 
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6. Fractional dijet mass resolution for a 10 TeV dijet mass as a 

function of calorimeter depth. Note that the resolution at great 

depths is only that due to energy resolution of the jets; fluctuations 

in fragmentation and the underlying event have not been included. 
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7. Standard deviation of the ratio of the reconstructed to generated 

dijet mass for 10 TeV dijets as a function of containment cone 

radius R. The points, o, refer to the case where only jet fragments 

are used. The points, 0, refer to the case where all particles in the 

event are used if they fall within the cone. 
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8. Histogram of the ratio of reconstructed to generated mass for 10 

TeV diets using a cone of radius R = 0.6. Only jet fragments are 
used in the calculation. 



9. Histogram of the energy of the “leading” hadronic fragment for a 10 

TeV diet. The energy units are GeV. 
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10. Error on the ratio of reconstructed to generated dijet mass as a 

function of the depth of the calorimetry for 10 TeV dijets; CITF 0, 

WA1 o, Lab E, Cl, parametrizations. 
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11. Cross section (arbitrary units) for missing P, due to jets. For jets, 

the horizontal axis is the jet transverse momentum, P,. The two 

possibilities which are shown are semileptonic decays of heavy quarks 

from leading fragments of gluons and leakage of jet fragments due to 

finite calorimeter depth. 
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12. Ratio of mean leakage energy to mean neutrino energy as a function 

of the calorimeter depth. The hatched region corresponds to 

“leakage” dominated by neutrinos. 
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13. Histogram of the fraction of the jet energy carried away by 

neutrinos. For leading fragmentation this fraction would be equal to 

l/6. 
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14. Rates behind the calorimeter germane to muon detection. 

a. Rate for muon decays as a function of P, at y = 0. The 

shaded area corresponds to the range cut of 10 absorption 

lengths of steel. 

b. Reduction factors with respect to pion rates for decay muons, 0, 

punchthrough at 7 absorption lengths,@, and at 8 absorption 

lengths, o, ss a function of P, at y = 0. 
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15. Energy depth asymmetry, 6, calculated using the WA1 

parametrization aa a function of leakage ratio, 7, for various energies; 

100, 200, 400, 800 GeV corresponding to l , o, 0 , and V , 

respectively. The calorimeter depths are D = 10, Dl = 6, and D2 

= 4. The electromagnetic fraction, fo, is fixed at the WA1 value. 
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16. The distribution, for 1000 events, of the containment fraction f for 

450 GeV incident beam. 

a. D = 10.1 calorimeter, no longitudinal segmentation. 

b. D = 10.1 calorimeter with Dl = 13.6 and D2 = 3.5 longitudinal 

segmentation. The fractional beam energy, A, in the back, 02, 

segment must be < 0.18. 35 
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17. In this Figure lines are drawn to guide the eye. Solid lines refer 

to 100 GeV data while dashed lines refer to 450 GeV data. The 
meaning of the symbols is that: 

l = 100 GeV, D = 10.1, Dl = 6.6, D2 = 3.5 

o = 450 GeV, D = 10.1, Dl = 6.6, D2 = 3.5 

V = 450 GeV, D = 9.4, Dl = 5.9, D2 = 3.5 

II= 450 GeV, D = 8.7, Dl = 5.2, D2 = 3.5 

a. Efficiency of event acceptance ss a function of A, the fractional 

beam energy cut in the back segment. 

b. Fraction of events, F, with containment fraction, f, < 95% as a 

function of A. 36 


